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Phase-amplitude solution of the Schro¨dinger equation with application to free-free absorption
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The phase-amplitude method for solving the Schro¨dinger equation is implemented for free-free absorption in
a hot, dense plasma. The method is benchmarked against two independent direct Schro¨dinger calculations.
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I. INTRODUCTION

The phase-amplitude method of solving the Schro¨dinger
equation has been of interest for a long time without giv
up many practical applications. The time-dependent thr
dimensional form was investigated by Bohm@1# as a quan-
tum form of the equations of fluid hydrodynamics. The s
called ‘‘Bohmian dynamics’’ has been recently reexamin
@2,3# from the point of view of the Lagrangian or movin
frame computational scheme, with applications to sim
quantum mechanical problems. Although the analog w
fluid hydrodynamics may make the method seem attrac
from a philosophical point of view, the severe practical pro
lems associated with the three-dimensional~3D! or even 2D
solution of the equations of motion in the Lagrangian fra
which have beset computational physicists in classical
drodynamics for many years might give one pause as to
the problem would be any less daunting in quantum phys

In classical hydrodynamics these difficulties show up
distortions of 2D and 3D meshes, requiring techniques s
as arbitrary Lagrangian-Eulerian~ALE! frame mixing, of
which Bohmian hydrodynamicists have already had to a
themselves to obtain sensible results@3#. The outcome, at
least in classical hydrodynamics, is a theoretical wildern
in which the possibility of meaningful results depen
strongly on adjustments to the theoretical methods once
liable laboratory data are in hand.

In this paper our phase-amplitude ambitions are m
modest but hopefully more practical: we study the pha
amplitude method for solving the radial Schro¨dinger equa-
tion. Recent papers@4–6# have appeared on this subje
which reveal that, notwithstanding the greater computatio
tractability of the 1D problem, difficulties remain in the pro
duction of accurate results, as discussed by Wilson and
workers@6#. These authors implement a hybrid version of t
phase-amplitude method, first used by Burgess and She
@7#, in which the radial Schro¨dinger equation is integrate
directly from the origin to a point beyond the classical tur
ing point where it is matched onto a phase-amplitude so
tion generated from the matching point to infinity or, as t
authors discuss, in the ‘‘far field.’’ In this paper we integra
the nonlinear equation for the amplitude over all space
find that the solution is numerically stable and accurate. T
1063-651X/2004/69~3!/035402~3!/$22.50 69 0354
e-

-
d

e
h
e
-

e
-
y

s.
s
h

il

s

e-

e
-

al

o-

rey

-
-

d
e

phase is found from numerical quadrature knowing the a
plitude.

II. THEORY AND RESULTS

In phase-amplitude theory the reduced radial wave fu
tion is written

c~r !5y~r !sin@w~r !#. ~1!

Substitution into the reduced radial Schro¨dinger equation
yields the equations for the amplitude and phase, resp
tively,

2
1

2
y91FL~L11!

2r 2 1V~r !2
k2

2 Gy1
k2

2y3 50, ~2a!

w5E
0

r

dr8
k

y2 . ~2b!

The WKB approximation for the phase, for largeL, follows
immediately by setting the second derivative in Eq.~2a!
equal to zero and solving for the integrand of Eq.~2b!,

k

y2 5Fk222V2
L~L11!

r 2 G1/2

. ~3!

In our application the potentialV represents the screene
interaction of a free electron with an ion embedded in
plasma and has the analytic form,

rU 52rV5( aie
2a i r , ~4!

where the parameters are given in Table I. There has b

TABLE I. Cs plasma potential parameters for a temperature
100 eV and a density of 0.187 g/cm3 @17#.

i ai a i

1 4.31601 33.89329
2 2.42685 23.46050
3 59.01007 6.30434
4 44.28462 0.20468
©2004 The American Physical Society02-1
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much interest recently in dynamic screening, in which
potential depends on the velocity of the projectile, for e
ample in fast photoexcitation in semiconductor physics@8#
and in ion-beam plasma interactions@9–11#. It appears that
the methods presented here could also be useful in dyna
screening applications.

Results for free-free absorption are presented in term
the Gaunt factor,

g5
)

2pkikf
( L@Mkikf ,LL21

2 1Mkikf ,L21L
2 #, ~5!

where the radial matrix elements are defined in the accel
tion gauge,

MkikfLL85E
0

`

drckf ,L8

dU

dr
ckiL

. ~6!

The acceleration gauge is the obvious choice owing to
long range of the integrands belonging to dipole matrix e
ment in the length or velocity gauges. It would be of inter
in future work to make comparison calculations in all thr
gauges, for which results appear not to be widely availa
for free-free absorption@12#. The agreement of the results fo
the different gauges is a sensitive test of the accuracy of
wave functions, a result which has been widely exploited
bound-free and bound-bound absorption. In these transit
one or both of the wave functions respectively is bound w
exponential decay at large distances from the nucle
thereby facilitating studies in all three gauges@13# since the
radial matrix elements are rapidly convergent in all thr
gauges. Free-free absorption on the other hand has ra
convergent matrix elements only in the acceleration gau
such that the length and velocity gauge calculations are
ally carried out@12,14,15# with the use of an exponentiall
decaying cutoff factor in the matrix element, and the resu
of a series of calculations are extrapolated to a result co
sponding to unit cutoff factor. The length and velocity gau
matrix elements are convergent only through the phase
match of the initial and final radial waves, such that o
really requires an analytic representation of the wave fu
tions in order to use these gauges with complete reliabi
For this reason we do not pursue a gauge study further at
time.

Equation~2a! is integrated backwards from larger into
the origin, withy51 as initial value at larger. At small r, y
is dominated by the solution irregular at the origin,y
'r 2L. The phase goes asw'r 2L11 and c @Eq. ~1!# as c
'r L11, or the Schro¨dinger solution regular at the origin. It i
necessary only to stop the backward solution far eno
from the origin to avoid overflows iny and at the same time
satisfy thatc is negligibly small. This procedure is illustrate
in Figs. 1 and 2, where the amplitude and the wave func
from the phase amplitude solution@Eq. ~1!# and from the
direct integration of the Schro¨dinger equation are plotted ve
susr. Note the agreement perfect within graphical accura
of the wave functions from the two different methods. W
have used the automatic error control ordinary differen
equation~ODE! method due to Bulirsch and Stoer@16#.
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A selection of phase-amplitude and direct Schro¨dinger re-
sults is given in Table II. The two Schro¨dinger calculations
serve as a benchmark for the accuracy of the pha
amplitude results. The GSFC Schro¨dinger calculation was
performed in quadruple precision, using ODE procedu
based on the Nordsieck method.

In order to run down the small differences between
two Schrödinger calculations, we calculated a single LLN
result in quadruple precision for photon energy 0.01 eV a

FIG. 1. Wave function forL50 andk510.5 a.u. Upper curve:
y(r ). Lower curves:c(r )5y(r )sin@w(r)# and c from the direct
solution of the reduced radial Schro¨dinger equation.

FIG. 2. Wave function forL55 andk510.5 a.u. Upper curve:
y(r ). Lower curves:c(r )5y(r )sin@w(r)# and c from the direct
solution of the reduced radial Schro¨dinger equation.
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electron energy 1000 eV. It is 936.654, which compares m
favorably with the GSCF result of 936.642 than does o
double precision result of 936.604 presented in Table II.
maining difference are likely due to different numerical pr
cedures used by the two authors.

TABLE II. Comparison of results for Gaunt factor.@Gaunt fac-
tors have been obtained by solving the Schro¨dinger equation at
Goddard Space Flight Center~GSFC! and at Lawrence Livermore
National Laboratory~LLNL !. These have also been calculate by t
phase-amplitude method~LLNL !. Eph is the photon energy andEi

the incident electron energy.Lmax is the number of partial wave
required to obtain convergence.#

Eph

~eV!
Ei

~eV! Lmax

Gaunt factor

Schrödinger Phase amplitude
~GSFC! ~LLNL ! ~LLNL !

0.01 100 36 258.944 259.086 258.387
500 54 641.588 640.446 641.363

1000 120 936.642 936.604 936.476
1500 130 1155.49 1155.23 1155.06

80.7 100 22 493.228 492.683 492.649
500 38 748.379 748.234 748.020

1000 46 993.365 993.319 993.060
1500 76 1200.59 1200.08 1199.99

246.0 100 15 659.046 658.648 657.984
500 33 848.959 848.769 848.746

1000 50 1053.51 1051.99 1051.72
1500 70 1227.65 1227.25 1226.81

1312.0 100 9 1355.75 1354.81 1355.29
500 14 1433.14 1432.39 1432.83

1000 16 1524.92 1524.01 1524.44
1500 22 1612.67 1611.19 1611.55
ys

s

s
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The speedup in computational time due to using
phase-amplitude method has been examined by others@6#,
and we do not belabor the point here. Obviously the ph
and amplitude can be tabulated on a coarse mesh with
stantial savings in computational time; however the spee
for the matrix element requires techniques such as those
veloped in@6# in which the slowly varying part of the inte
grand is fitted to a linear functional form and the rapid
varying part is evaluated analytically. Our concern here is
show that the nonlinear equation for the amplitude@Eq. ~2a!#
can be integrated over allr to obtain a numerically stable
result. Wilsonet al. @6# have stated that the amplitude equ
tion is unstable; we find no evidence to support this ass
tion.

III. CONCLUSIONS

Although the phase-amplitude method has been inve
gated since the early days of quantum mechanics, most
tably in its approximate form, the WKB approximation,
has not been widely implemented in atomic or plasma ph
ics applications. Previous applications have suffered fr
inaccuracies@5# or from hybrid phase-amplitude-Schro¨dinger
procedures@6,7# which we believe are unnecessary in toda
era of fast high-precision computing.
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